1. 焊接残余应力对构件的危害及消除方法
焊接残余应力对构件的危害是
1、对结构刚度的影响 当外载产生的应力与结构中某区域的残余应力叠加之和达到屈服点时,这一区域的材料就会产生局部塑性变形,丧失了进一步承受外载的能力,造成结构的有效截面积减小,结构的刚度也随之降低。
2、对受压杆件稳定性的影响 当外载引起的压应力与残余应力中的压应力叠加之和达到屈服点口。,这一部分截面就丧失进一步承受外载的能力。这就削弱了构件的有效截面积,并改变了有效截面积的分布,降低了受压杆件的稳定性。
3、对静载强度的影响 没有严重应力集中的焊接结构,只要材料具有一定的塑性变形能力,残余应力不影响结构的静载强度。反之,如材料处于脆性状态,则拉伸残余应力和外载应力叠加有可能使局部区域的应力首先达到断裂强度,导致结构早期破坏。
4、对疲劳强度的影响 残余应力的存在使变载荷的应力循环发生偏移。这种偏移,只改变其平均值,不改变其幅值。结构的疲劳强度与应力循环的特征有关,当应力循环的平均值增加时,其极限幅值就降低,反之则提高。因此,如应力集中处存在着拉伸残余应力,疲劳强度将降低。
5、对焊件加工精度和尺寸稳定性的影响 机械加工把一部分材料从焊件上切除时,此处的残余应力也被释放。残余应力原来的平衡状态被破坏,焊件发生变形,加工精度受影响。
6、对应力腐蚀开裂的影响 应力腐蚀开裂是拉伸残余应力和化学腐蚀共同作用下产生裂纹的现象,在一定材料和介质的组合下发生。应力腐蚀开裂所需的时间与残余应力大小有关,拉伸残余应力越大,应力腐蚀开裂的时间越短。
焊接残余应力消除方法有:
利用锤击焊缝区来控制焊接残余应力
焊后用小锤轻敲焊缝及其邻近区域,使金属展开,能有效地减少焊接残余应力。
利用预热法来控制焊接残余应力
构件本体上温差越大,焊接残余应力也越大。焊前对构件进行预热,能减小温差和减慢冷却速度,两者均能减小焊接残余应力。
利用“加热减应区法”来控制焊接残余应力
焊接时,加热那些阻碍焊接区自由伸缩的部位,使之与焊接区同时膨胀和同时收缩,就能减小焊接应力,这种方法称为“加热减应区法”,加热的部位就称之为“减应区”。
利用高温回火来消除焊接残余应力
由于构件残余应力的最大值通常可达到该种材料的屈服点,而金属在高温下屈服点将降低。所以将构件的温度升高至某一定数值时,应力的最大值也应该减少到该温度下的屈服点数值。如果要完全消除结构中的残余应力,则必须将构件加热到其屈服点等于零的温度,所以一般所取的回火温度接近于这个温度。
1、整体高温回火 将整个构件放在炉中加热到一定温度,然后保温一段时间再冷却。通过整体高温回火可以将构件中80%~90%的残余应力消除掉,这是生产中应用最广泛、效果最好的一种消除残余应力的方法。
回火时间随构件厚度而定,钢按每毫米壁厚l~2min计算,但不宜低于30min,不必高于3h,因为残余应力的消除效果随时间迅速降低,所以过长的处理时间是不必要的。
2、局部高温回火 只对焊缝及其局部区域进行加热消除残余应力。消除应力的效果不如整体高温回火,此方法设备简单,常用于比较简单的、刚度较小的构件,如长筒形容器、管道接头、长构件的对接接头等焊接残余应力的消除。
利用温差拉伸法来消除焊接残余应力
温差拉伸法消除焊接残余应力的基本原理与机械拉伸法相同,主要差别是利用局部加热的温差来拉伸焊缝区。
温差拉伸法是在焊缝两侧各用一个宽度适当的氧乙炔焰焊炬进行加热,在焊炬后面一定距离,用一根带有排孔的水管进行喷水冷却。氧乙炔焰和喷水管以相同速度向前移动。这就形成了一个两侧温度高(峰值约为200℃)、焊接区温度低(约为100℃)的温度差。两侧金属受热膨胀对温度较低的区域进行拉伸,这样就可消除部分残余应力。据测定,消除残余应力的效果可达50%~70%。
利用振动法来消除焊接残余应力
构件承受变载荷应力达到一定数值,经过多次循环加载后,结构中的残余应力逐渐降低,即利用振动的方法可以消除部分焊接残余应力。一种大型焊件使用振动器消除应力的装置。
振动法的优点是设备简单、成本低,时间比较短,没有高温回火时的氧化问题,已在生产上得到一定应用。
爆炸法
通过布置在焊缝附近的炸药带,引爆产生的冲击波与焊接残余应力的交互作用,使金属产生适量的塑性变形,从而消除焊接残余应力的方法,叫焊接残余应力爆炸法。
2. 焊接件如何消除内应力
焊接内应力的消除
机械加工过程中,特别是铸锻焊件,在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。
传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。后两种方法应用较少,这里不作介绍。
自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,在温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。
热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。
振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。
振动时效艺具有耗能少、时间短、效果显著等特点。与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。因此,目前对长达几米至几十米和桥梁、船舶、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。 生产周期短。自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。 使用方便。振动设备体积小、重量轻、便于携带。由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。 节约能源,降低成本。在工件共振频率下进行时效处理,耗能极少,能源消耗仅为热时效的3~5%,成本仅为热时效的8~10%。 其他。振动时效操作简便,易于机械化自动化。可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷。是目前唯一能进行二次时效的方法。
3. 减少焊接残余应力的措施有哪些
减少焊接残余应力的措施:
焊后热处理法(PWHT)
常用的PWHT有两种方法:一种是整体热处理,即
将焊件整体放入炉中进行热处理,这种方法一般可消
除80%~90%的焊接残余应力;另一种方法是局部热处
理,即对焊缝周围局部区域进行加热,它只能降低残
余应力峰值,不能完全消除残余应力。
(2)机械拉伸法
通过机械拉伸,使焊接接头拉伸残余应力区域产生拉伸塑性变形,卸载后降低焊接残余应力,一般适用于屈服比较小的塑性材料。
(3)温差拉伸法
其基本原理与机械拉伸法相同。
(4)锤击焊缝
采用带有小圆弧面的手锤或风枪锤击焊缝,使焊缝金属延展,从而降低内应力。锤击时力量要适中,使2mm范围内受到影响,避免因锤击过重而产生裂纹,同时要注意避免在300~4000C之间锤击,以免出现蓝脆。一般根部焊道不锤击以免产生裂纹,盖面焊道不锤击以免影响焊缝美观。
(5)振动法
即以振动产生的交变应力对工件施加附加应力,当附加应力与焊接残余应力叠加后达到或超过金属材料的屈服点时,在工件内部就会产生一定塑性变形,从而使焊接残余降低或均匀化。这种方法设备简单、操作方便、经济性好,但振动参数不易选择。
4. 焊接残余应力是怎么产生的,焊接应力如何消除
焊接残余应力产生条件:
焊件在焊接过程中,热应力、相变应力、加工应力等超过屈服极限(Yield strength),以致冷却后焊件中留有未能消除的应力。 这样,焊接冷却后的残余在焊件中的宏观应力称为残余焊接应力。焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。
焊接残余应力消除方法:
1、利用锤击焊缝区来控制焊接残余应力,焊后用小锤轻敲焊缝及其邻近区域,使金属展开,能有效地减少焊接残余应力。
2、利用预热法来控制焊接残余应力
构件本体上温差越大,焊接残余应力也越大。焊前对构件进行预热,能减小温差和减慢冷却速度,两者均能减小焊接残余应力。
3、利用“加热减应区法”来控制焊接残余应力
焊接时,加热那些阻碍焊接区自由伸缩的部位,使之与焊接区同时膨胀和同时收缩,就能减小焊接应力,这种方法称为“加热减应区法”,加热的部位就称之为“减应区”。
4、利用高温回火来消除焊接残余应力
由于构件残余应力的最大值通常可达到该种材料的屈服点,而金属在高温下屈服点将降低。所以将构件的温度升高至某一定数值时,应力的最大值也应该减少到该温度下的屈服点数值。如果要完全消除结构中的残余应力,则必须将构件加热到其屈服点等于零的温度,所以一般所取的回火温度接近于这个温度。
4、整体高温回火 将整个构件放在炉中加热到一定温度,然后保温一段时间再冷却。通过整体高温回火可以将构件中80%~90%的残余应力消除掉,这是生产中应用最广泛、效果最好的一种消除残余应力的方法。回火时间随构件厚度而定,钢按每毫米壁厚l~2min计算,但不宜低于30min,不必高于3h,因为残余应力的消除效果随时间迅速降低,所以过长的处理时间是不必要的。
5、局部高温回火 只对焊缝及其局部区域进行加热消除残余应力。消除应力的效果不如整体高温回火,此方法设备简单,常用于比较简单的、刚度较小的构件,如长筒形容器、管道接头、长构件的对接接头等焊接残余应力的消除。
6、利用温差拉伸法来消除焊接残余应力
温差拉伸法消除焊接残余应力的基本原理与机械拉伸法相同,主要差别是利用局部加热的温差来拉伸焊缝区。
温差拉伸法是在焊缝两侧各用一个宽度适当的氧乙炔焰焊炬进行加热,在焊炬后面一定距离,用一根带有排孔的水管进行喷水冷却。氧乙炔焰和喷水管以相同速度向前移动。这就形成了一个两侧温度高(峰值约为200℃)、焊接区温度低(约为100℃)的温度差。两侧金属受热膨胀对温度较低的区域进行拉伸,这样就可消除部分残余应力。据测定,消除残余应力的效果可达50%~70%。
7、利用振动法来消除焊接残余应力
构件承受变载荷应力达到一定数值,经过多次循环加载后,结构中的残余应力逐渐降低,即利用振动的方法可以消除部分焊接残余应力。一种大型焊件使用振动器消除应力的装置。
5. 焊接件如何消除应力能达到什么效果
焊接应力是焊接构件由于焊接而产生的应力。焊接过程中焊件中产生的内应力和焊接热过程引起的焊件的形状和尺寸变化。焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。当焊接引起的不均匀温度场尚未消失时,焊件中的这种应力和变形称为瞬态焊接应力和变形;焊接温度场消失后的应力和变形称为残余焊接应力和变形。在没有外力作用的条件下,焊接应力在焊件内部是平衡的。焊接应力和变形在一定条件下会影响焊件的功能和外观,因此是设计和制造中必须考虑的问题。
为了消除和减小焊接残余应力,应采取合理的焊接顺序,先焊接收缩量大的焊缝。焊接时适当降低焊件的刚度,并在焊件的适当部位局部加热,使焊缝能比较自由地收缩,以减小残余应力。热处理(高温回火)是消除焊接残余应力的常用方法。整体消除应力的热处理效果一般比局部热处理好。焊接残余应力也可采用机械拉伸法(预载法)来消除或调整,例如对压力容器可以采用水压试验,也可以在焊缝两侧局部加热到200℃,造成一个温度场,使焊缝区得到拉伸,以减小残余应力。 随着科技发展,近几年开始采用豪克能技术来消除焊接应力。相比其他传统的焊接应力消除方式,豪克能技术有很多优势:
1、是目前最彻底消除焊接残余应力并产生出理想压应力的时效方法(各种时效方法消除残余应力 的情况如下:振动时效30~55%、热时效40~80%、豪克能时效80~100%)。
2、可使焊接接头疲劳强度提高50%-120%,疲劳寿命延长5-100倍。金属在腐蚀环境下的抗腐蚀能力提高约400%。
3、用于消除焊接应力可完全替代热处理、振动时效等时效方法,且处理工艺简单,效果稳定可靠。
4、不受工件材质、形状、结构、钢板厚度、重量、场地之限制,特别是在施工现场、焊接过程和焊接修复时用于消除焊接应力更显灵活方便。
5、可直接将焊趾处的焊接余高、凹坑、咬边处理成圆滑的几何过渡,从而大大降低应力集中系数。
6、可去除焊趾处的微观裂纹、熔渣缺陷,抑制裂纹的提前萌生。
7、因为豪克能消除应力处理能同时改善影响焊缝疲劳性能的几个方面的因素,如:残余应力、微观裂纹和缺陷、焊趾几何形状、表面强化等,所以是目前提高焊缝疲劳性能最有效的方法,且有事半功倍之效果。
8、更适用于大型结构件的工地焊缝、超高超低处焊缝、焊接修复焊缝的消除应力处理。
9、环保、节能、安全、无污染,施工现场使用更显灵活方便。
楼主可自行网络“豪克能焊接应力消除”,网络文库中有更详细的介绍。
6. 焊接应力消除目前比较彻底的技术手段有哪些
豪克能焊接应力消除设备专门针对焊缝及热影响区进行应力消除,针对版性更强,消除焊接残权余拉应力80%以上同时预置压应力,振动时效消除应力水平一般在40%-50%,热处理在50%-60%左右,所以相比来讲还是豪克能更好一些
7. 机械构件消除焊接残余应力有哪些焊后措施
机械构件焊后主要采用热处理法、拉伸法、振动时效处理法消除焊接残余应力。
1、热处理法消除焊接残余应力
热处理法消除焊接残余应力在生产中比较常见,退火在工程上较常采用。退火温度越高、保温时间越长,消除焊接残余应力效果也就越好。但是采用热处理法会存在难以避免的缺陷,会使工件表面氧化速度加快,增大金相组织变化的可能性,甚至影响到构件的机械机械强度和表面特性。
2、拉伸法消除焊接残余应力
采用机械拉伸法可以在一定程度减小并消除焊接残余应力。
3、振动时效消除焊接残余应力
利用振动时效设备,由偏心轮和变速电机组成的激振器,使焊接结构件发生共振所产生的循环应力来降低焊接内应力。振动时效消除焊接残余应力工艺简单、成本较低、节能环保,且无高温回火给金属表面造成的氧化问题。
8. 消除焊接残余应力的方法有
简言之,因为焊接过程也是个对金属加热的过程,按热胀冷缩之原理,母材受热必然膨胀,然而母材受热并非整体全部均匀受热,而是局部的受热而且温度非常高(焊弧中心温度达摄氏6000度以上,钢铁熔化温度须1300度以上),受高温部分金属肯定要膨胀,但是周围金属对它牵制,不让这部分金属充分膨胀,于是这部分金属受到压缩,当压缩应力超过屈服极限,金属弹性丧失,温度降低后,也无法再回复原来的形态,造成永久性的收缩变形,同样结构也不允许该部分随意收缩,于是结构产生变形和焊接的残余应力,达到平衡。
焊接应力的消除:1、从以上分析可知,要完全消除是不可能的,只能加以控制尽量减少;
2、焊接结构设计时尽可能减少“刚性”,让焊缝有较大的自由收缩,使焊接产生的应力通过变形来释放,内应力自然减少;
3、焊接时减少线能量,焊缝尽量采用小而薄的,焊缝尺寸不要过大,控制在上限以下,下限以上;电流尽量采用下限;多个焊工施焊时,尽量采用对称焊接方法,抵消部分残余应力。
9. 怎样消除焊接残余应力
利用锤击焊缝区来控制焊接残余应力
焊后用小锤轻敲焊缝及其邻近区域,使金属展开,能有效地减少焊接残余应力。据
利用预热法来控制焊接残余应力
构件本体上温差越大,焊接残余应力也越大。焊前对构件进行预热,能减小温差和减慢冷却速度,两者均能减小焊接残余应力。
利用“加热减应区法”来控制焊接残余应力
焊接时,加热那些阻碍焊接区自由伸缩的部位,使之与焊接区同时膨胀和同时收缩,就能减小焊接应力,这种方法称为“加热减应区法”,加热的部位就称之为“减应区”。
利
利用高温回火来消除焊接残余应力
由于构件残余应力的最大值通常可达到该种材料的屈服点,而金属在高温下屈服点将降低。所以将构件的温度升高至某一定数值时,应力的最大值也应该减少到该温度下的屈服点数值。如果要完全消除结构中的残余应力,则必须将构件加热到其屈服点等于零的温度,所以一般所取的回火温度接近于这个温度。
1、整体高温回火 将整个构件放在炉中加热到一定温度,然后保温一段时间再冷却。通过整体高温回火可以将构件中80%~90%的残余应力消除掉,这是生产中应用最广泛、效果最好的一种消除残余应力的方法。
回火时间随构件厚度而定,钢按每毫米壁厚l~2min计算,但不宜低于30min,不必高于3h,因为残余应力的消除效果随时间迅速降低,所以过长的处理时间是不必要的。
2、局部高温回火 只对焊缝及其局部区域进行加热消除残余应力。消除应力的效果不如整体高温回火,此方法设备简单,常用于比较简单的、刚度较小的构件,如长筒形容器、管道接头、长构件的对接接头等焊接残余应力的消除。
利用温差拉伸法来消除焊接残余应力
温差拉伸法消除焊接残余应力的基本原理与机械拉伸法相同,主要差别是利用局部加热的温差来拉伸焊缝区。
温差拉伸法是在焊缝两侧各用一个宽度适当的氧乙炔焰焊炬进行加热,在焊炬后面一定距离,用一根带有排孔的水管进行喷水冷却。氧乙炔焰和喷水管以相同速度向前移动。这就形成了一个两侧温度高(峰值约为200℃)、焊接区温度低(约为100℃)的温度差。两侧金属受热膨胀对温度较低的区域进行拉伸,这样就可消除部分残余应力。据测定,消除残余应力的效果可达50%~70%。
利用振动法来消除焊接残余应力
构件承受变载荷应力达到一定数值,经过多次循环加载后,结构中的残余应力逐渐降低,即利用振动的方法可以消除部分焊接残余应力。一种大型焊件使用振动器消除应力的装置。
振动法的优点是设备简单、成本低,时间比较短,没有高温回火时的氧化问题,已在生产上得到一定应用。
爆炸法
通过布置在焊缝附近的炸药带,引爆产生的冲击波与焊接残余应力的交互作用,使金属产生适量的塑性变形,从而消除焊接残余应力的方法,叫焊接残余应力爆炸法。